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INTRODUCTION

Data envelopment analysis (DEA) is the leading 
technique for assessing the efficiency of deci-
sion making units (DMU) in the presence of 
multiple inputs and outputs. The two milestone 
DEA models, namely the CCR (Charnes et al., 
1978) and the BCC (Banker et al., 1984) models 
have become standards in the literature of per-
formance measurement. Recent applications of 
DEA include, among others, those of Mahdavi et 
al. (2008), Martin and Roman (2010), Pramodth 
et al. (2008) and Sufian (2010). The underlying 
mathematical instrument for performing the 

analysis is linear programming. Performing a 
typical DEA analysis means solving a series 
of linear programs, one for each DMU. Ef-
ficiency is measured in a bounded ratio scale 
by the fraction ‘weighted output’ to ‘weighted 
input’. The inputs and outputs are assumed 
to be continuous positive variables and the 
weights are estimated through the associated 
linear program in favor of the evaluated unit 
so as to maximize its efficiency.

Focusing on the outputs, an output measure 
multiplied by the associated weight is called 
virtual output. The summation of the virtual 
outputs over all the output dimensions, called 
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total virtual output, forms the numerator of the 
efficiency ratio. A typical interpretation of the 
weights is that they represent marginal values 
of outputs. In this manner the virtual outputs 
can be conceived as linear partial value func-
tions and the total virtual output as an overall 
additive value function. According to Dyson et 
al. (2001) the linearity assumption underlying 
the virtual outputs might be unjustifiable in 
cases where the marginal value of an output 
diminishes as the output increases. Recently, 
Cook and Zhu (2009) and Despotis et al. (2010), 
motivated by applications involving non-linear 
virtual outputs, proposed a piece-wise linear 
representation of the partial value functions as 
a means to model the situation where particular 
outputs exhibit diminishing returns. Despotis et 
al. (2010) showed that ordinary DEA models 
can be used to perform the efficiency assess-
ments by appropriately introducing additional 
input/output dimensions in the original data set.

In this paper we extend the piece-wise linear 
approach in interval DEA to fit the case where 
the DEA efficiency assessments must be per-
formed on the basis of input and/or output data 
that are only known to lie within intervals with 
given bounds (interval data). We reformulate 
the partial value functions (virtual inputs and 
outputs) by introducing additional input/output 
dimensions to obtain an augmented data set that 
will form the basis for interval efficiency assess-
ments. The rest of the paper unfolds as follows. 
In the second section we revisit the piece-wise 
linear DEA models as applied on crisp data to 
present a simplified formulation, which will 
be the basis for our new developments. In the 
third section we provide a brief description of 
the interval  DEA models proposed by Despotis 
and Smirlis (2002). In the fourth section we 
provide our main developments that extend 
the piece-wise linear DEA approach to interval 
DEA and we formulate appropriate models 
capable of estimating lower and upper bound 
efficiencies when inputs (outputs) exhibit 
increasing (diminishing) returns. In the fifth 
section we illustrate our new developments 
with an artificial data set. The paper ends with 
some concluding remarks.

DEA MODELS WITH 
NON-LINEAR PARTIAL 
VALUE FUNCTIONS

Consider the following input-oriented CCR 
DEA model (multiplier form) with n DMUs, 
m inputs and s outputs, where yrj denotes the 
level of the output r (r =1,…, s) produced by 
the DMU j (j=1,…,n), xij denotes the level of 
the input i (i=1,…, m) consumed by the DMU 
j and the variables u=(ur, r=1,…,s) and v=(vi, 
i=1,…,m) are the unknown weights attached to 
the outputs and the inputs respectively:
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Model (1) estimates the relative efficiency
h
j0

of the evaluated DMU j0 and is solved re-
peatedly for every DMU j, j n= 1,..., .  Let 
U y r s
r rj
( ) , ,...,= 1  and U x i m

i ij
( ) , ,...,= 1  

denote the virtual outputs and inputs for unit j 
respectively. Then
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are the total virtual output and input respec-
tively for unit j, which are linear functions of 
the weights.

Recently, Cook and Zhu (2009) and Des-
potis et al. (2010) relaxed the linearity assump-
tion in DEA by introducing a piece-wise linear 
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representation of the virtual inputs and outputs. 
Setting y

r
min and y

r
max at the levels of the lowest 

and the highest observed values of output r 
respectively, they split the interval [ , ]min maxy y

r r
 

into successive and non-overlapping segments 
by taking a number of breakpoints and then 
assigned a different weight for each segment. 
Restrictions on the weights are then imposed 
to drive the concavity or the convexity of the 
value functions.

For the clarity of the presentation, we 
simplify the models introduced in Despotis et 
al. (2010), by assuming only one breakpoint 
y
r
0 that splits the range of values of output r in 

two sub-intervals [ ], ( ].min maxy y y y
r r r r

 ,   ,  0 0  
Figure 1 depicts a typical linear value function, 
as assumed in the original DEA model (line a), 
increasing returns beyond the threshold y

r
0 (line 

segment b) and diminishing returns beyond the 
threshold y

r
0 (line segment c).

On the basis of the above segmentation, 
the output valuey y y

rj r r
∈ [ , ]min max  of any unit j 

is decomposed in two parts and is expressed as 
y
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In this manner, the partial value U y
r rj
( ) is 

modeled in a piece-wise linear form:

U y u u
r rj r rj r rj
( )= +

1
1

2
2δ δ              (5)

where ur1 and ur2 are the distinct weights as-
sociated with the two sub-intervals.

In general, the nonlinearity assumption is 
applicable or desirable for particular outputs 
only (nonlinear outputs), with the rest of them 
complying with the linearity assumption. With-
out loss of generality, we assume that the first 
d (d<s) outputs are linear and the rest of them 
(i.e. forr d s= +1,..., ) nonlinear. Then the 
total virtual output (3) takes the following form:
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The virtual inputs are modeled analo-
gously. Indeed, if [ , ]min maxx x

i i
is the interval 

defined by the minimum and the maximum 
values of input i and x

i
0 is the breakpoint that 

splits this interval in two segments, the input 
value x x x

ij i i
∈ [ , ]min max of any unit j is decom-

posed in two parts x
ij ij ij
= +γ γ1 2  where:
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Figure 1. Piece-wise linear value function for output r
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and the virtual input U x
i ij
( ) is modeled as a 

piece-wise linear function:

U x v v
i ij i rj i rj
( )= +

1
1

2
2γ γ              (6)

where vi1 and vi2 are the input weights associated 
with the two sub-intervals. Then the total virtual 
input (4) is given by the following equation:
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where the first t inputs are assumed linear and 
the rest of them non-linear.

Imposing the homogeneous restrictions 
u c u
r r r1 2

0− ≥  (c
r
> 1 ) on the weights ur1 

and ur2, the value function (5) is restricted to 
be concave. Similarly, the relations 
− + ≥v v z
i i i1 2

0  ( 0 1< <z
i

), on the weights 
vi1 and vi2, restrict the value function (6) to be 
convex.

The formulations presented above trans-
form the original data set into an augmented 
data set by decomposing each one of the 
non-linear inputs and outputs in two auxiliary 
linear inputs and linear outputs respectively. 
This transformation allows us to perform the 
efficiency assessments without drawing away 
from the grounds of the standard DEA methodol-
ogy. The model (7) below is a piece-wise linear 
DEA model with weight restrictions imposing 
concave value functions for outputs and convex 
value functions for inputs. As the inputs are in 
the denominator of the efficiency ratio, convex 
value functions penalize the excess inputs.
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AN INTERVAL DEA PRIMER

In interval DEA, the inputs and the outputs are 
only known to lie within intervals with given 
positive lower and upper bounds, i.e. 
x x x
ij ij

L
ij
U∈ [ , ]  and y y y

ij rj
L

rj
U∈ [ , ] . Thus the 

original DEA model (1) becomes non-linear as 
the inputs and the outputs are treated as 
bounded variables rather than as constants. 
Since the seminal paper of Cooper et al. (1999), 
a number of approaches have been proposed to 
deal with imprecise data in DEA- a broader 
spectrum of data variants such as crisp, interval 
and ordinal data (e.g. Despotis & Smirlis, 2002; 
Entani et al., 2002; Zhu, 2003; Wang et al., 
2005; Jahanshahloo et al., 2009; Kao, 2006; 
Shokouhi et al., 2010, among others).

Despotis and Smirlis (2002) introduced 
the notion of interval efficiency assessments in 
DEA that is, for each DMU, a lower and an 
upper bound of the efficiency scores is esti-
mated. They transformed the aforementioned 
nonlinear DEA model to a linear equivalent by 
applying simple variable transformations. Then 
they showed that the upper efficiency bound 
h
j
U

0
 and the lower efficiency boundh

j
L

0
 are 

obtained by the following couple of standard 
DEA models respectively:
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Upper efficiency bound 
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Lower efficiency bound
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Models (7)-(9) above are the basis for our 
new developments in the next section.

MODELING PIECEWISE 
LINEAR VIRTUAL INPUTS/
OUTPUTS IN INTERVAL DEA

To model the piecewise linear virtual outputs 
when interval data are considered, let us introduce 
the following notation for an interval output 
measure r: y y j n

r rj
Lmin min{ , ,.., }= = 1 and 

y y j nr rj
Umax max{ , ,.., }= = 1  denote respec-

tively the minimum lower bound and the maxi-
mum upper bound over the interval observations 
of output r for all DMUs. Let y y y

r
o

r r
∈ [ , ]min max  

be a given threshold value beyond which the 
output r exhibits diminishing returns. The thresh-
oldy

r
o  splits the interval [ , ]min maxy y

r r
 of output r 

in two sub-intervals [ , ]miny y
r r

0  and ( , ]maxy y
r
o

r
. 

The value function for output r is then assumed 
linear in each sub-interval and piecewise linear 
over [ , ]min maxy y

r r
. The relative position of the 

interval output [ , ]y y
rj
L

rj
U of any unit j with regard 

to the threshold value y
r
o is depicted in Table 1.

Employing interval arithmetic, the interval 
[ , ]y y
rj
L

rj
U can then be decomposed in two sub-

intervals as follows:

Table 1. Relative positions of [ , ]y y
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Case
Position relative to the threshold value y

r
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r
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On the basis of the above segmentation, 
each output interval [ , ]y y
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U  is decomposed in 

two intervals [ ]δ δ1 1
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U, and [ , ]δ δ2 2
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L
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U , pre-

sented in Box 1.
In this manner the original interval data 

set is transformed to an augmented data set by 
decomposing each interval output measure into a 
couple of auxiliary interval output measures, to 
which distinct weights ur1 and ur2 are assigned.

The treatment of interval inputs is quite 
similar. Indeed, if x x x

i
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and the rest s-d non-linear, we introduce the 
segmentation defined in (10) to the total virtual 
outputs in models (8) and (9), which now take 
the form:
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Similarly, the total virtual inputs in (8) and 

(9) take the form (13) as follows:
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where the first t inputs are assumed linear and 
the rest m-t non-linear.

Introducing (12) and (13), the DEA models 
for estimating the upper and lower efficiency 
bounds in the presence of concave virtual out-
puts and convex virtual inputs are as follows:
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The last two constraints in the linear pro-
grams (14) and (15) drive the concavity and 
the convexity of the value functions for the 
non-linear outputs and inputs respectively. The 
parameters cr and vi are case-depended user-
defined constants that adjust the sharpness of 
diminishing (increasing) returns. The higher is 
the value of the parameter cr the sharper is the 
effect of the diminishing returns in the effi-
ciency assessments. Analogously, the smaller 
is the value of vi the more intense is the increas-
ing returns, which in the case of inputs interprets 
as sharper penalization of the excess inputs, i.e. 
input values exceeding the threshold
x x x
i
o

i i
∈ [ , ].min max

ILLUSTRATIVE EXAMPLE

To illustrate our approach, consider the follow-
ing example with 21 units, which are evaluated 
in terms of two inputs x x

1 2
,  and two outputs

y y
1 2
, ,  all of interval type (see Table 2).

We assume that the output y2 is non-linear, 
exhibiting diminishing returns beyond the 
threshold valuey

2
0 =63. Thus the virtual output 

for y2 is modeled as a piece-wise linear non-
decreasing concave value function. Applying 
the data transformations described in (10), we 
get the augmented interval data set of Table 3. 
In accordance to Table 1 and with reference to 
the non-linear output y2, the units can be parti-
tioned in three classes, with respect to the posi-
tion of their interval output relative to the 
threshold valuey

2
0 =63: The units s1-s7 belong 

in class (i), the units s8-s14 belong in class (ii), 
whereas the units s15-s21 belong in class (iii) 
(see Figure 2).

Models (14) and (15) applied to the inter-
val data set of Table 3 enable the estimation of 
the upper and lower efficiency bounds in the 
presence of the non-linear outputy

2
. To control 

the sharpness of concavity of the non-linear 
output y

2
 we set the parameter value in models 

(14) and (15) at c2=3, i.e. we introduce the 
constraint u u

21 22
3 0− ≥  for the unique non-

linear output y2. The higher the value of the 
parameter c2 the more sharply the diminishing 
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returns affects the contribution of the output y2 
to the efficiency score of the evaluated unit. 
Table 4 presents the upper and lower effi-
ciency scores as estimated first by the interval 
DEA models (8) and (9), where all inputs and 
outputs are assumed linear and then by the new 
models (14), (15) that assume a non-linear 
value function for the interval outputy

2
.

It is made clear from the results in Table 
4 that the assumption of diminishing returns 
for output y2 has as effect a general decrease in 
the efficiency scores of the units. The effect is 
more intense for the units in class (iii), whose 
output values for y2 exceed the threshold value 
y

2
0 =63.

Table 2. Input/output data of interval type 

Unit
x
1

x
2

y
1

y
2

s1 [118 125] [74 79] [209 213] [56 59]

s2 [101 113] [37 42] [208 218] [57 59]

s3 [115 121] [23 36] [259 265] [51 57]

s4 [111 120] [69 75] [216 222] [58 61]

s5 [108 141] [42 47] [222 239] [60 62]

s6 [109 149] [25 45] [241 252] [58 61]

s7 [105 151] [35 40] [250 260] [45 58]

s8 [130 135] [87 88] [205 211] [56 64]

s9 [121 136] [75 79] [206 208] [52 65]

s10 [125 152] [59 69] [201 208] [58 71]

s11 [121 138] [65 87] [267 297] [60 71]

s12 [125 165] [28 36] [260 261] [52 69]

s13 [138 162] [30 52] [248 265] [58 68]

s14 [143 151] [49 52] [211 231] [49 71]

s15 [139 155] [35 38] [215 219] [65 69]

s16 [171 183] [67 78] [209 215] [69 75]

s17 [169 153] [55 67] [204 208] [67 71]

s18 [139 159] [28 43] [241 246] [68 70]

s19 [163 178] [52 78] [271 281] [67 74]

s20 [159 163] [60 70] [262 272] [65 74]

s21 [176 193] [27 47] [228 246] [71 75]
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Table 5 exhibits the sample linear program 
(14), which estimates the upper bound of ef-
ficiency scores hU

14
 for the unit s14, which was 

initially rated efficient by model (8) and then 
inefficient by the model (14).

The optimal weights u21 and u22 estimated 
by the linear program of Table 5 for the two 

sub-intervals [45, 63] and [63, 75] of the non-
linear output y2 of unit s14 are u21=0.0141 and 
u22=0.0047. Figure 3 depicts the associated 
value function assessed for the non-linear 
output y2 (solid line) together with the linear 
value function of y2, as assessed by model (8) 
for the same unit s14 (dotted line).

Table 3. The augmented interval data set 

Units
x
1

x
2

y
1

[ ]δ δ1 1
2 2j
L

j
U, [ , ]δ δ2 2

2 2j
L

j
U

s1 [118 125] [74 79] [209 213] [56 59] [0 0]

s2 [101 113] [37 42] [208 218] [57 59] [0 0]

s3 [115 121] [23 36] [259 265] [51 57] [0 0]

s4 [111 120] [69 75] [216 222] [58 61] [0 0]

s5 [108 141] [42 47] [222 239] [60 62] [0 0]

s6 [109 149] [25 45] [241 252] [58 61] [0 0]

s7 [105 151] [35 40] [250 260] [45 58] [0 0]

s8 [130 135] [87 88] [205 211] [56 63] [0 1]

s9 [121 136] [75 79] [206 208] [52 63] [0 2]

s10 [125 152] [59 69] [201 208] [58 63] [0 8]

s11 [121 138] [65 87] [267 297] [60 63] [0 8]

s12 [125 165] [28 36] [260 261] [52 63] [0 6]

s13 [138 162] [30 52] [248 265] [58 63] [0 5]

s14 [143 151] [49 52] [211 231] [49 63] [0 8]

s15 [139 155] [35 38] [215 219] [63 63] [2 6]

s16 [171 183] [67 78] [209 215] [63 63] [6 12]

s17 [169 153] [55 67] [204 208] [63 63] [4 8]

s18 [139 159] [28 43] [241 246] [63 63] [5 7]

s19 [163 178] [52 78] [271 281] [63 63] [4 11]

s20 [159 163] [60 70] [262 272] [63 63] [2 11]

s21 [176 193] [27 47] [228 246] [63 63] [8 12]
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CONCLUSION

This paper extends the piece-wise linear ap-
proach, originally developed for standard DEA 
models, to the case of interval DEA. Our mod-
eling approach concludes with a couple of 
linear programs capable of estimating a 
bounded efficiency interval [ , ]h h

j
L

j
U for each 

evaluated unit in the presence of input/output 

dimensions, for which the linearity assumption 
for the value functions permeating the standard 
DEA methodology cannot be validated. The 
models (14) and (15) assume concave value 
functions for non-linear outputs and convex 
value functions for the non-linear inputs. How-
ever, as long as the form of the value functions 
is specified through constraints on the weights, 
any other case-specific form can be defined by 

Figure 2. The interval data of output y2

Figure 3. Partial value functions as assessed for output y2 of unit s14
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Table 4. Lower and upper bounds of efficiency scores 

Models (8) and (9) Models (14) and (15) with c2=3

Units hL hU hL hU

s01 0.7631 0.9909 0.7660 0.9912

s02 0.8809 1 0.8797 1

s03 0.8845 1 0.8821 1

s04 0.8233 1 0.8265 1

s05 0.7358 1 0.7353 1

s06 0.6998 1 0.7115 1

s07 0.7094 1 0.7065 1

Average of Class (i) 0.7852 0.9987 0.7868 0.9987

s08 0.7065 0.9753 0.7101 0.9658

s09 0.6514 1 0.6652 1

s10 0.6511 1 0.6510 1

s11 0.785 1 0.7821 1

s12 0.6768 1 0.6756 1

s13 0.6378 1 0.6401 1

s14 0.5773 1 0.5802 0.9508

Average of Class (ii) 0.6694 0.9964 0.6720 0.9880

s15 0.7452 1 0.7302 1

s16 0.6438 0.8688 0.6081 0.7765

s17 0.7476 0.8871 0.7198 0.8263

s18 0.7539 1 0.7173 1

s19 0.6474 0.9762 0.6420 0.9034

s20 0.6864 0.9260 0.6891 0.8805

s21 0.6537 1 0.6052 1

Average of Class (iii) 0.6968 0.9511 0.6730 0.91239
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Table 5. The LP program (14) for the unit s14: estimation of hU
14

v
1

v
2

u
1

u
21

u
22

RHS

143 49 0 0 0 = 1

125 79 209 56 0 ≤ 0

113 42 208 57 0 ≤ 0

121 36 259 51 0 ≤ 0

120 75 216 58 0 ≤ 0

141 47 222 60 0 ≤ 0

149 45 241 58 0 ≤ 0

151 40 250 45 0 ≤ 0

135 88 205 56 0 ≤ 0

136 79 206 52 0 ≤ 0

152 69 201 58 0 ≤ 0

138 87 267 60 0 ≤ 0

165 36 260 52 0 ≤ 0

162 52 248 58 0 ≤ 0

143 49 231 63 8 ≤ 0

155 38 215 63 2 ≤ 0

183 78 209 63 6 ≤ 0

153 67 204 63 4 ≤ 0

159 43 241 63 5 ≤ 0

178 78 271 63 4 ≤ 0

163 70 262 63 2 ≤ 0

193 47 228 63 8 ≤ 0

0 0 0 -1 3 ≤ 0

0 0 231 63 8 max hU
14



Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

48   International Journal of Operations Research and Information Systems, 4(2), 36-49, April-June 2013

restricting the weights appropriately. Our mod-
eling approach enables models (14) and (15) 
to carry out the efficiency assessments when 
different types of input/output measures are 
involved, such as linear and/or non-linear inputs 
and outputs with exact as well as with interval 
measures.
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